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Aspects of Soliton Propagation in Stimulated 
Raman Scattering 

K. J. Driihl, 1 J. L. Carlsten, 2 and R. G. Wenzel 2 

Solitons have recently been observed in stimulated Raman scattering (SRS) 
(details about the experiments and the identification of solitons may be 
found in Refs. 1 and 2). In this paper we shall discuss certain aspects con- 
cerning the propagation of solitonlike excitations through a finite medium 
in the presence of coherence decay, and for optical pulses of finite duration. 
The equations for SRS are given by 

O X / ~  = - e X +  A I A *  (1) 

OA 1 / ~  = - X A 2  (2) 

OA 2/0~ = X * A  ~ (3) 

X is the off-diagonal matrix element for the Raman transition, 
corresponding to the coherent polarization induced by the optical fields. 
The first term in Eq. (1) describes collisional decay of phase coherence 
(damping) with rate e. A corresponding equation for the diagonal matrix 
element, giving the population difference, has been ~uppressed, since this 
difference remains nearly constant under the given experimental conditions. 
A1 and A2 are the slowly varying envelopes of the pump and Stokes electric 
fields, r and ~ are related to time t and position z in the laboratory by 

~ = z, r = t - z /e  (4) 

Suitable units of intensity, length, and time have been chosen to render all 
coupling constants equal to unity. Note that the unit of time in (1) has 
been chosen to represent an intrinsic, typical time scale of variation for the 
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class of solutions considered (~X/&, .~X) .  The dimensionless parameter 
hence may be considered as this intrinsic time scale measured in units of 
the damping time (inverse damping rate). 

For a finite medium extending into the half-plane Z >  0 and optical 
fields of finite duration, which vanish inside the medium at t = 0, the initial 
conditions are 

A k ( Z  = 0, t) = Ak(~ = 0, ~ = t) = ak(~) k = 1, 2 (5a) 

ak(z) = 0 for �9 < 0 k = 1, 2 (5b) 

X ( Z , t = O ) = O  for Z > 0  (6a) 

X ( Z ,  t = c /Z)  = X(~ = Z, T = 0) = 0 (6b) 

(6b) is a consequence of Eqs. (1)-(3) and Eq. (5b), and expresses the fact 
that no polarization is induced in the medium before the arrival of the 
leading edge of the optical pulses. 

Solutions to Eqs. (1)-(3) for e = 0  have been found by Chu and 
Scott, (3'4) and recently for a more complete set of equations by Kaup (5) and 
Steudel. (6) Chu and Scott give in particular the one-soliton form of the 
matrix element X (which equals their Y except for a phase factor). From 
their solution and Eqs. (1)-(3) the optical fields can be calculated to give 
the complete solution: 

X =  #~e '~(~'~) sech/3(~, ~) 

A 1 = # ,e  i~(r sech fi(~, ~)/(#2 +/~)1/2 

A2 = [#,  tanh fi(~, ~) - igR]/(#~ + #~)~/2 

(7a) 

(7b) 

(7c) 

where e({, r ) = # R { + m / r ,  fi({, r ) = # / ~ - m R z + ~ 0 ,  c 0 R= # j ( # ~ + # ~ )  and 
m ,  = uR/(~/~ + #~). 

gz and /~R are constants of integration. The solution is essentially a 
traveling wave with group velocity v in the laboratory, where 
v - l =  c-1 +/~2 + #~. Its temporal width is given by A~ = co~ ~. Stokes and 
pump frequency difference are detuned from Raman resonance by Am = mr. 

The sum of IAll  2 and IAzl 2 is equal to unity. At the center of the 
excitation (~ = 0) the pump intensity assumes its maximum value 

2 ~2/~.2+~)=1/[1+(3m3~)23<.1 IAllmax = I /~R 

while the Stokes field undergoes a rapid phase shift of 
A~b = 2 tan -1 (1/AmAr).  

This solution does not satisfy the boundary conditions (5) and (6). In 
fact it was found by the method of inverse spectral transform (IST) (see, 
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for example, Ref. 7), where the field values are assumed to be given for all 
at ~ = 0, and their values for r > 0 are then calculated. 

Nevertheless a class of solutions (7) satisfies Eqs. (5) and (6) to a very 
good approximation, and is hence of physical relevance. Firstly we observe 
that Eq. (7) remains a valid solution when restricted to a finite ~ interval. 
Secondly, for rio>> 1, X(~, ~ = 0) will be exponentially small for ~ > 0  and 
Eq. (6a) is satisfied approximately. Note, however, that for any finite 
interval the soliton will disappear at the trailing edge of the optical pulses 
after a finite propagation distance, owing to its reduced group velocity 
v < c. This may explain why no observation of solitons has been reported 
so far in hypertransient SRS (e~0). 

The physical mechanism of soliton propagation becomes most evident 
for the case #R = 0 (no detuning). In this case the matrix element X and the 
driving term A ' A ]  will both have the same sign in the leading edge of the 
soliton (fl > 0), leading to loss for the pump and gain for the Stokes field 
by Eqs. (2) and (3). In the trailing edge (fl < 0), however, the driving term 
has changed sign, and is out of phase by 180 ~ with the matrix element X. 
Now loss and gain are reversed; the pump field sees gain, and the Stokes 
field sees loss. In physical terms this is anti-Stokes scattering. Normally 
anti-Stokes scattering occurs because of population inversion in the Raman 
active medium, leading to a change of sign in the right-hand side of Eq. (1). 
In this case the necessary phase relation is created dynamically by the rapid 
change of phase in the Stokes field, without any population inversion. Note 
that this effect is quite analogous to the occurrence of stimulated emission 
in the trailing edge of a bleaching wave in self-induced transparency. (8) 

For e > 0 the same physical mechanism will lead to the occurrence of 
solitonlike solutions, which are, however, no longer traveling waves. A per- 
turbative analysis within the general framework of the Zakharov-Shabat 
inverse scattering scheme has been given by Kaup. (9) He assumes that the 
field variables (in our case the matrix element X) are given by the one- 
soliton solution for all ~ at ~ = 0, and derives equations for the time depen- 
dence of the solution parameters valid to first order in e. From his general 
analysis we obtain the following solution to Eqs. (1)-(3), for #R=0,  valid 
to first order in e: 

X(~, v) = #,(v) sech fl,(~, z) + AX(~, r) (8a) 

1 1 
fl~(~, v) = #1(z) ~" sinh 2~r (8b) 

#i(0) 2e 

#i(~) = #,(0) e ~ (8c) 

While this approach again does not solve the physical boundary value 
problem where the fields are assumed to be given for all ~ at ~ = 0, we can 
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nevertheless derive some useful conclusions about the ( dependence of the 
observed excitation from the solution above. The temporal position of the 
soliton center is given by 

= ~0(~), /~(~, to(~)) = 0 

exp[-4~0(~)] ='4~#2(0)~ + 1 (9) 

Expanding/~ to first order in ~ and r at z = ~0 we obtain the one-soliton 
form for the first term in (8a) with t-dependent parameter: 

X(~ + ~', to + t ') -/~t(to) sech fl(% ;~', t ') + AX(~ + ~', to + ~') 

~(~o; ~', t ' ) =  m(~o) ~ ' -  ~1(~o)  t '  (10) 

This expansion is valid for sufficiently small parameter /~1(0). These 
results show that the temporal width of the soliton will narrow down with 
increasing gain length ~ approximately like the inverse square root of ~. 
Furthermore, the center position of the soliton in the enveloping optical 
pulse will depend only weakly (logarithmically) on the gain length, show- 
ing that the soliton velocity approaches the velocity of light in the 
laboratory frame. Both conclusions are confirmed by experimental (z) and 
numerical studies. 

In Fig. 1 we show numerical results of the temporal soliton position 
and width, together with theoretical results from (9) and (10). The soliton 
parameter is equal to #z(0)=0.112 and was obtained from the slope of 
curve 1. The agreement is good, although not perfect. A reformulation of 
the inverse spectral transformation scheme for this case, which allows treat- 
ment of the physical boundary value problem, is presently under study. 

In the present numerical experiments and also in the laboratory 
experiments (z) the solitons are created by a sudden phase change of 180 ~ in 
the injected Stokes beam. This occurs at ~=0,  that is, before any 
amplification in the medium has taken place, and the Stokes intensity is 
typically several orders of magnitude smaller than the pump intensity. In 
the presence of coherence decay and for exact resonance this configuration 
leads to the buildup of a one-soliton excitation as the pulse is propagated 
into the medium (~ > 0), which shows the features of temporal narrowing 
and acceleration in the laboratory frame, as discussed above. In the 
absence of coherence decay, and for nonzero detuning (#Re0)  the 
situation is less clear at the moment. Our numerical experiments indicate 
that for e = 0  no solutions with well-defined one-soliton features will 
develop at zero detuning for values of ~ which are accessible experimen- 
tally. For /~R 5 0  both experimental (2) and numerical (1~ results indicate 
that solitonlike solutions do develop initially; however, they will decay at 
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Fig. 1. Curve 1: Soliton position exp4s~o; solid line, analytical approximation; O, 
numerical. Curve 2: Soliton width Ar(~)/Az(O); solid line, analytical approximation; x, 
numerical. 

larger ~ for a large class of initial conditions. This result seems plausible in 
view of the fact that the solution (7a) to (7c) imposes certain relations 
between detuning Am, soliton width Av, total phase shift A~b, and maximal 
pump amplitude. Both questions are presently under study within an 
inverse spectral transform approach to the physical initial conditions (5) 
and (6). (11) 

ACKNOWLEDGMENTS 

The authors wish to acknowledge useful discussions with D. Kaup on 
the subject of this paper. 

REFERENCES 

1. K. Drfihl, R. G. Wenzel, and J. L. Carlsten, Phys. Rev. Lett. 51:1171 (1983). 
2. R. G. Wenzel, J. L. Carlsten, and K. J. Drfihl, J. Stat. Phys. 39:621 (1985), in this issue. 
3. F. Y. F. Chu and A. C. Scott, Phys. Rev. A 12:2060 (1975). 



620 Dr~ihl, Carlsten, and Wenzel  

4. F. Y. F. Chu, in Bficklund Transformations, R. M. Miura, ed., Lecture Notes in 
Mathematics, No. 515 (Springer, New York, 1976). 

5. D. J. Kaup, Physica 6D:143 (1983). 
6. H. Steudel, Physica 6D:155 (t983). 
7. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Studies Appl. Math. Ll11:249 

(1974). 
8. S. L. McCall and E. L. Hahn, Phys. Rev. 183:457 (1969). 
9. D. J. Kaup, SIAM J. AppL Math. 31:121 (1976). 

10. J. Ackerhalt, private communication. 
11. D. J. Kaup, private communication. 


